INDUCIBLE SYSTEMS

Switch On Protein-Protein Interactions

Rapid and specific control of signal transduction pathways, protein activity, protein localization, transcription, and more...

Clontech is the exclusive provider of iDimerize products—inducible dimerization systems and cellpermeant ligands which were previously provided by ARIAD Pharmaceuticals, Inc. under the brand name ARGENT. This technology has been used by over 2,000 investigators in 35 countries, with over 400 scientific publications to date.

Why Manipulate Protein-Protein Interactions?

- Many critical processes in the cell require protein interactions. In fact, the majority of human proteins can form oligomers—including most cell surface receptors and >70% of human enzymes.
- Inducible protein-protein interaction technology can be applied to any biological process that can be manipulated by influencing the interactions/localization of a protein.
- iDimerize gives you small molecule control of the pathway involvement, activity, or location of your protein of interest.
- With iDimerize, proteins interact specifically and rapidly.

Table I: Just Some of the Published Processes Controllable by iDimerize Technology		
Cell signaling	Gene transcription	
Apoptosis	Enzyme activation	
Protein secretion	Protein relocalization	
Pathway activation	Protein synthesis	
Cell adhesion	Cell rolling	
Protein splicing	RNA splicing	
Glycosylation	DNA looping	
Neurite growth	Transformation	
Amyloid fibril formation	Substitute your research interest here	

How Does iDimerize Work?

A chemical inducer of dimerization, or "dimerizer", is a cell-permeant organic small molecule with two separate motifs that each bind with high affinity to a specific protein module (Dmr domain) fused onto the protein(s) of interest. Addition of the dimerizer brings the chimeric protein subunits into very close proximity to each other, mimicking the activation of the cellular event that dimerization of the protein of interest controls (1, 2). Conversely, a reverse dimerizer ligand will bind to and dissociate a protein that aggregates in its absence.

Inducible Homodimerization

Induced self-association of two copies of the same protein

• Use for *in vitro* and *in vivo* studies, to control a wide variety of cellular processes, including proliferation, differentiation, adhesion, transformation, and apoptosis

Inducible Heterodimerization

Induced association of two different proteins

• Use for *in vitro* and *in vivo* studies, to create conditional alleles of receptors, signaling molecules, or any other protein normally regulated by interactions between two different proteins

Inducible Reverse Dimerization

Induced dissociation (solubilization or deaggregation) of proteins

• Use for *in vitro* and *in vivo* studies, to control intracellular location and to induce regulated secretion

Small Molecule Control of Signal Transduction Pathways

Many signaling cascades are activated almost exclusively by the interactions of signaling proteins. Cell surface receptor proteins cluster in response to extracellular factors, which leads to the recruitment and activation of intracellular signaling proteins. This ultimately leads to transcription activation, effector protein production, and activation or secretion. Any step of this signaling pathway can be brought under dimerizer control by fusing the proteins involved to domains recognized by the respective dimerizer ligand.

The **iDimerize Inducible Homodimer System** (Cat. No. 635068) uses the B/B Homodimerizer ligand, which incorporates two identical binding motifs, to induce self-association of a single signaling domain or other protein of interest. The **iDimerize Inducible Heterodimer System** (Cat. No. 635067) uses the A/C Heterodimerizer ligand, which contains two different binding motifs, to allow the dimerization of two different proteins of interest, each of which is fused to a different dimerization domain recognized by the heterodimerizer. Lentiviral formats (Lenti-X[™] Systems) are also available.

Table II: Types of Signaling Proteins Activated by iDimerize Technology:		
Receptor and non-receptor tyrosine kinases		
Receptor and non-receptor serine/threonine kinases		
Non-kinase receptors		
Signaling proteases		
Adaptor proteins		

Example: Inducing a Programmed Cell Death Pathway (Inducible Apoptosis)

The Fas receptor (FasR) is a transmembrane protein located on the surface of cells that activates programmed cell death (apoptosis) when induced to trimerize by the fas ligand (FasL) located on the surface of adjacent cells (e.g., cytotoxic T cells). FasL/FasR binding plays an important role in the regulation of the immune system

and cancer progression. This apoptotic signaling cascade can be mimicked using iDimerize (Figure 1). An *in vivo* model (the MaFIA mouse; 3) utilizes the Fas receptor to systematically and reversibly eliminate macrophages from transgenic mice.

Figure 1. Fas-induced apoptosis *in vitro*. The fas receptor (FasR), once trimerized, activates an apoptosis pathway. Programmed cell death can be mimicked at will by transfecting cells with a construct encoding the Fas-DmrB fusion protein and treating overnight with B/B Homodimerizer to induce trimerization (Panel A). Less than 1 nM B/B Homodimerizer was sufficient to induce maximal cell death in these cells (Panel B; data kindly provided by ARIAD Pharmaceuticals, Inc.).

Inducible Gene Expression

The **iDimerize Inducible Expression System** (Cat. No. 635065), an application kit using heterodimerization technology, can be used to control transcription activation of target genes.

Data kindly supplied by ARIAD Pharmaceuticals Inc.

Figure 2. Dose-dependent control of gene expression with the iDimerize Inducible Expression System. HT1080 cells were stably transfected with the secreted alkaline phosphatase (SEAP) reporter gene and the DmrC-AD/DmrA/DNA-BD constructs, and treated with increasing concentrations of A/C Heterodimerizer. In the absence of A/C Heterodimerizer, target gene expression was undetectable. Half-maximal induction occurred at 2 nM A/C Heterodimerizer.

Clon**tech**

Temporal Control of Protein Secretion

In the **iDimerize Reverse Dimerization System** (Cat. No. 635066) aggregation is the resting state, and the D/D Solubilizer breaks up protein-protein interactions. This version of the technology can be used for rapid, reversible changes in the subcellular location, aggregation state and/or biological activity of engineered proteins.

An innovative application of this technology is inducible protein secretion, described in Figure 3. The D/D Solubilizer ligand can be added to induce protein secretion from cells in a matter of 15 minutes (Figure 4). This method has been used to induce rapid, transient, and tightly-regulated secretion of insulin in a mouse model for diabetes. Induced release of insulin reversed hyperglycemia (5).

Figure 3. The iDimerize Reverse Dimerization System enables dose-dependent control of protein secretion. Fusion proteins containing DmrD domains localize to the endoplasmic reticulum as aggregates (Panel A). When the D/D Solubilizer is added, it dissolves the aggregates and allows the protein to be exported through the secretory apparatus (Panel B).

Figure 4. Secretion of DmrD-tagged luciferase after addition of D/D Solubilizer. 7 hr after transfection with a DmrD-tagged *Metridia luciferase* construct, cells were split into wells of a 6-well plate. The medium was removed and fresh medium was added containing increasing concentrations of D/D Solubilizer. 18 hr later, the media was collected and analyzed using Clontech's Ready-To-Glow[™] Secreted Luciferase Reporter System (Cat. No. 631731).

		Cat. No.
Plasmid Systems (include 500 µl aliquot of dimerizer ligand)		
iDimerize Inducible Homodimer System ea	ach (635068
iDimerize Inducible Heterodimer System ea	ach (635067
iDimerize Reverse Dimerization System ea	ach (635066
iDimerize Inducible Expression System ea	ach (635065
Lentiviral Systems (include 500 µl aliquot of dimerizer ligand)		
Lenti-X iDimerize Inducible Homodimer System ea	ach (635072
Lenti-X iDimerize Inducible Heterodimer System ea	ach (635074
Lenti-X iDimerize Reverse Dimerization System ea	ach (635076
Dimerizer Ligands (<i>in vitro</i> format—supplied at 0.5 mM in ethanol)		
B/B Homodimerizer 504)0 μl	635060
B/B Homodimerizer 5 x	x 500 μl 🛛 🛛	635059
A/C Heterodimerizer 500)0 μl	635057
A/C Heterodimerizer 5 x	x 500 μl 🛛 🛛	635056
D/D Solubilizer 500)0 μl	635054
D/D Solubilizer 5 x	x 500 μl 🛛 🛛	635053
Dimerizer Ligands (<i>in vivo</i> format—supplied dry)		
B/B Homodimerizer 25	5 mg 🛛 🕅	635069
B/B Homodimerizer 5 n	mg (635058
A/C Heterodimerizer 5 m	mg (635055
D/D Solubilizer 5 n	mg ÷	*

Notice to Purchaser Your use of these products and technologies is subject to compliance with any applicable licensing requirements described on the product's web page at http://www.clontech.com. It is your responsibility to review, understand and adhere to any restrictions imposed by such statements.

References

- 1. Clackson, T. et al. (1998) Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc. Natl. Acad. Sci. USA 95(18): 10437-10442.
- 2. Clackson, T. (2007) In Chemical Biology: From Small Molecules to Systems Biology and Drug Design, Eds. Schreiber, S. L. et al. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany), pp. 227-249.
- 3. Burnett, S. H. et al. (2004) Conditional macrophage ablation in transgenic mice expressing a Fas-based suicide gene. J. Leukoc. Biol. 75(4):612-623.
- Pomerantz, J. L. et al. (1995) Structure-based design of transcription factors. 4. Science 267(5194):93-96.
- 5. Rivera, V. M. et al. (2000) Regulation of protein secretion through controlled aggregation in the endoplasmic reticulum. Science 287(5454):826-830.

TakaRa

Tel. 02-2081-2510 Tel. 042-828-6525