Technical Tips

Pyrithiamine 내성 형질전환시스템의 유용성 검토

pPTR I (TaKaRa Code 3621) 및 pPTR II (TaKaRa Code 3622)는, A. oryzae유래 pyrithiamine(PT) 내성유전자 ptrA¹¹를 선택 마커로 하는 A.oryzae 등 Aspergillus속 진균을 숙주로 하는 사상균·대장균 형질전환용 shuttle vector이다. Thiamin analog PT 함유배지에서 형질전환체를 선택할 수 있다. PT에 감수성(표1)인 균주로 protoplast 조제가 비교적 용이한 사상균 A. kawachii, A. terreus, A. fumigatus, Trichoderma reesei에서 형질전환체를 얻었으며²¹, 이 시스템의 범용성에 대해 간단히 소개한다.

표 1 각 사상균의 PT에 대한 MIC

Strains		PT conc. $(\mu g/ml)$					
		0.05	0.1	0.5	1	10	
A. orzae RIB128	+	_	_	_	_	_	
A. niger IAM2561	+	\pm	_	_	_	_	
A. kawachii IFO4308	+	\pm	_	_	_	_	
A. shirousamii RIB2502	+	_	_	_	_	_	
A. sojae RIB1045	+	\pm	_	_	_	_	
A. tamarii IAM 2561	+	_	_	_	_	_	
A. flavus IFO 30537	+	_	_	_	_	_	
A. parasiticus IAM13888	+	_	_	_	_	_	
A. nidulans A89	+	_	_	_	_	_	
A. terreus IFO 30537	+	_	_	_	_	_	
A. fumigatus TIMM 2726	+	_	_	_	_	_	
Monasccus anka RIB5202	+	\pm	_	_	_	_	
Trichoderma reesei IFO31326		_	_	_	_	_	
Penicillium citrinum IFO7784		+	+	+	+	+	
Fusarium solani IFO9425		+	+	+	+	+	

■ 실험1 : pPTR | 및 || 에 의한 형질전환효율

(방법)

pPTR I (염색체 조합형)과 II (자율복제형)을 protoplast-PEG법³⁾으로 *A. kawachii, A. terreus, A. fumigatus, Trichoderma reesei*에 도입하였다. 0.1 μg/ml PT를 함유한 Czapeck-Dox(CD) 최소재배를 선택배지로 사용하였다(*T. reesei*만 top agar에 0.02% casamino acid를 첨가). 30℃에서 7~10일간 배양한 후, 선택배지상에 생성된 colony를 관찰했다.

(결과)

각 균주의 형질전환 효율을 표 2에 나타내었다.

표 2 각 균주의 형질전환 효율(colony수/ug plasmid DNA)

균주 ·	plasmid				
进十	pPTR I	pPTR II			
A. nidulans A89	76	1878			
A. oryzae RIB128	6.6	344			
A. kawachii IFO4308	0.8	65			
A. terreus IF030537	0.8	100			
A. fumigatus TIMM2726	0.6	42			
Trichoderma reesei IFO31326	8	490			

■ 실험2: pPTRⅡ vector를 사용한 GUS(β-glucuronidase) report 유전자의 도입 및 발현

(방법)

A. oryae glaA promoter-E. coli uidA(GUS유전자를 코딩)-A. oryae amyB terminator에서 형성되는 chimera 유전자⁰를 pPTR II 에 삽입한 pPTR II-GUS를 제작하여(A)A. kawachii, (B)A. fumigatus에 형질전환하였다. 0.1 μg/ml PT, 0.8 M NaCl을 포함한 CD 최소재배를 선택배지로 사용하였다. 생성된 형질전환체 0.1 μg/ml PT, 1% dextrin, 50μg/ml X-gluc, 0.3% Triton X를 포함한 CD 최소배지(발현배지)에서, 5∼15일간 배양한 후, GUS 단백질 발현에 의해 청색 발색 유무를 관찰하였다.

(결과)

A. kawachii, A. fumigatus 에서 형질전환체를 얻어 발현배지에서 GUS 단백질 발현에 의한 청색 발색을 확인하였다(그림1).

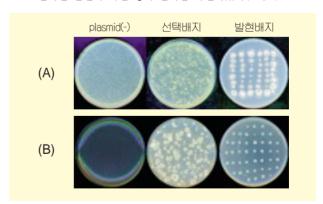


그림 1 형질 전환체의 선택과 GUS 단백질의 발현(A) A. kawachii; (B) A. fumigatus

[참고문헌]

- Kubodera, T. et al. (2000) Biosci. Biotechnol. Biochem., 64 (7), 1416-1421.
- 2) Kubodera, T. et al. Biosci, Biotechnol, Biochem, (submitted)
- 3) Life Science & Biotechnology (2000) 16, 34-35
- 4) Hata, Y. et al. (1992) Curr. Genet., 22 (2), 85-91.

Technical Tips

형광편광도측정법을 이용한 Glucocorticoid Receptor 결합실험

FLUPOLOTM

Glucocorticoid Receptor Competitor Assay Kit

TaKaRa Code TE 100 1대
TaKaRa Code V2816 100 assays
PanVera사 제품입니다.

TaKaRa에서는 생물간 상호작용을 광범위하게 측정하기에 가장 적합한 형광편광도 측정 mult plate reader (FLuPoLo™을 판매중이다. Plate 상에서 형광편광도를 측정할 수 있어 다수의 시료를 동시에 측정할 수 있는 장점이 있다.

또 형광편광도 측정법(FLUPOLO™나 Full-Range BEACON® 2000을 사용)으로 각종 receptor에 결합하는 물질을 assay하는 kit도 판매하고 있다. 즉 FP Screen-for-Competitors Kit, ER-α 및 ER-β는 환경호르몬 물질의 screening 등에(Life Science & Biotechnology 17호, 32; Life Science & Biotechnology 18호, 55), Glucocorticoid Receptor Competitor Assay Kit는 새로운 Glucocorticoid Receptor(GR) 결합물질의 screening이나 steroid 생화학연구등에(Life Science & Biotechnology 18호, 55), Progesterone Receptor Competitor Assay Kit은 신규 Progesterone Receptor 결합물질의 screening 등에 사용할 수 있다.

본 고에서는 Glucocorticoid Receptor Competitor Assay Kit 와 (FLUPOLO™을 이용하여 GR에 대한 dexamethasone 및 17β-estradiol의 친화성(EC50)을 측정하였다.

■ 실험예 : GR에 대한 dexamethasone (DEX) 와 17β-estradiol (E2) 의 친화성측정

Glucocorticoid Receptor Competitor Assay Kit를 사용하여 GR에 높은 친화성을 가지는 DEX와 친화성이 낮은 E₂를 테스트시료로 GR에 대한 친화성(EC₅₀)을 측정하였다.

Fluorescent glucocorticoid(Fluormone GS1)와 GR의 결합에 대한 테스트 화합물의 경합저해작용을 $FLUPOLO^{\rm TM}$ 을 사용하여 형광 편광도의 변화로 측정하였다(Life Science & Biotechnology 16호, 42, 측정원리 그림 참조). DEX : 10, 1 μ mol, 100, 50, 25, 10, 5, 1, 0.1 nmol; E2 : 100, 50, 10, 5, 2.5, 1 μ mol, 500, 100, 10 nmol의 각용액 1 μ 를 49 μ 의 GR Screening Buffer(×1)에 첨가하여 vortex mixer로 혼합한다. 각각에 4 nM의 fluormone GS1을 25 μ , 16 nM의 GR을 25 μ 첨가하여 원심분리한다. 이때 vortex mixer로 너무 강하게 혼합하지 않도록 주의한다(혼합은 spin down 정도로 충분함). 차광한 실온(25°C 정도)에서 1시간 방치하여 경합 반응을 한다.

표준 방법으로 $FLUPOLO^{TM}$ 을 set up 하였다. $FLUPOLO^{TM}$ 는 TakaraFluor2(자가형광의 유무에 관계없이 적용가능)와 XFLUOR4(시료가 자가형광을 가지지 않는 경우에 적용)의 두 개 프로그램을 이용할 수 있지만, 본 실험에서 측정한 시료 (DEX 및 E_2)는 자가형광을 가지지 않아 양쪽 다 측정이 가능하나 본 고에서는 XFLUOR4을 이용하였다.

측정용 plate는 COSTOR3694 EIA/RIA PLATE, Solid Black 96 Well(Corning Inc.)를 사용하였다. Blank는 75 ᆈ의 GR Screening Buffer(×1)와 25 ᆈ의 16 nM GR을 혼합하여 사용하였다. 1 시간 방치한 반응액을 96 well plate에 옮기고 Ex. 485 nm, Em. 535 nm, Number of Flashes 20, Gain(Manual)149, G-Factor 0.893958(1 nM FITC/0.01 N NaOH)의 조건에서 측정하여 GlaphPad PRISM™소프트웨어(TaKaRa Code GP100)를 사용하여 해석하였다(그림 1).

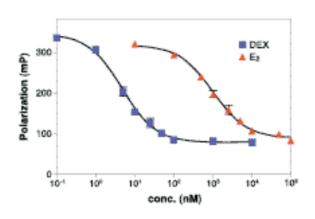


그림 1 GR에 대한 DEX 와 E2의 친화성 측정

■ 결과

그림 1의 결과에서 DEX 및 E2의 EC50값은 DEX: 4.66 nM, E2: 998.4 nM로 과거의 문헌에 보고된 값과 유사했다^{1,2)}.

[참고문헌]

- 1) Mulatero, P. et al. (1997) Hypertension, 30, 1274-1278.
- 2) Hogger, P. and Rohdewald, P.(1997) Steroids, 59, 597-602.

Technical Tips

항 Catenin antibody를 이용한 면역조직염색

Catenin은 세포 접착 분자인 cadherin의 세포질영역에 결합하고 있어 cadherin eta-catenin lpha-catenin lpha-catenin 복합체를 형성한다. Catenin은 cadherin 기능에 필수적이고, cadherin과 복합체를 형성하여, cadherin을 도와주는 단백질로 동물의 형태형성이나 조직 구축, 유지에 관여하고 또 세포 골격체의 상호 작용에 중요한 역할을 한다.

최근 catenin은 다음과 같은 분야에서 활발히 연구되고 있다. ① 높은 전이성·침투성을 가진 암세포에서 α -catenin이 높은 빈도로 결실되거나 감소한다. ② 핵 내에서 β -catenin은 Lef/TCF(lymphoid enhancer binding factor, Lef; T-cell-specific factor, TCF) family로 불리는 DNA 결합 단백질과 복합체를 형성하여 목적 유전자의 전사활성을 조절한다. ③ Receptor type의 tyrosine phosphatase가 β -catenin과 결합하고 있다. ④ β -catenin은 암억제유전자 APC(adenomatous polyposis coli)의 산물과 결합해 그 발현이 정상적인 APC산물에 의해 조절되고 있다. ⑤ β -catenin은 importin β 와 유사하며 핵막을 통과할 수 있는 분자로, 세포외 signal의 하나인 Wnt signal 전달계에 관여하여 핵내에서 기능한다.

■ Catenin

α-catenin은 906 아미노산(분자량 102 kDa)으로 이루어져 있으며, 분자의 N 말단, 중앙부, C 말단에서 vinculin과 30% 전후의 상동성을 가지고 있다. α-catenin은 cadherin-β catenin 복합체와 actin 세포골격을 연결하는 기능을 갖고 있어 cadherin은 강한 세포간접착분자로 작용한다. α-catenin은 성체의 중추신경계 이 외 세포간접착성을 가진 거의 모든 세포에 분포하고 있다. 또한 α-catenin 유전자는 인간염색체에서는 5q23에 위치하고 있으며 16개이상의 exon으로 구성되어 있다.

한편 β -catenin은 781 아미노산(분자량 90 kDa전후)으로 이루어져 있으며 세포질인자인 procoglobin과 63%의 상동성을 가지며, 분자 중앙의 약 560 아미노산 영역에는, armadillo(ARM)repeat로 불리는, 42 아미노산으로 형성된 반복 unit(소수성 아미노산이 많고, 각 unit간 상동성은 낮다)가 13개 나열되어 있다. 이영역은 cadherin의 세포질 영역과의 결합에 관여하며, N말단 영역은 α -catenin과의 결합에 관여한다. β -catenin은 cadherin과 α -catenin과의 결합을 중개하여 cadherin의 접착성을 억제하는 역할을 하고 있어 형태형성에 관여하는 signal 전달분자로 불리며 β -catenin유전자는 사람염색체 3α 21에 위치하고 있다.

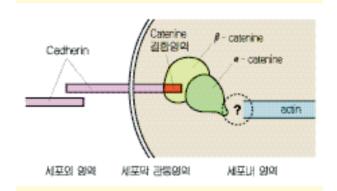


그림 1

■ 실험예

1 차 항체 : Monoclonal 항 α-catenin 항체/항 β-catenin 항체 200배 희석(10 μg/ml)
Polyclonal 항 α-catenin 항체/항 β-catenin 항체 400배 희석(5 μg/ml)

조직절단 : 시판(DAKO)하는 파라핀포매 절편(인간조직)

검출방법 : ENVISION plus(DAKO)

조작순서 : 1) 탈 파라핀

1) 글 되어난 2) 부활처리 Microwave(전자레인지)처리, 10 mM citrate buffer(pH6.0)로 5분×6회 처리

- 3) 내인성 peroxidase blocking 3% H₂O₂, 15분
- 4) 비특이적 결합 blocking blockase(원액) 30분
- 5) 일차 항체반응 실온 30분
- 6) ENVISION plus 실온 30분
- 7) DAB발색 반응
- 8) 핵염색(hematoxylin)
- 9) 탈수 · 투철 · 봉입

[참고문헌]

- 1) Nollet, F. et al. (1996) GENOMICS, 32, 413-424.
- Herrenknknecht, K. et al. (1991) Proc. Natl. Acad. Sci. USA, 88, 9156-9160.
- 3) 세포공학 별책 접착분자 handbook(수윤사)
- 4) Bio Science 용어 라이브러리 세포접착 (양토사)
- 5) 현대화학 증간 29 세포접착분자 (동경화학동인)

항 Catenin antibody를 이용한 면역조직염색 🦲

면역조직염색의 결과

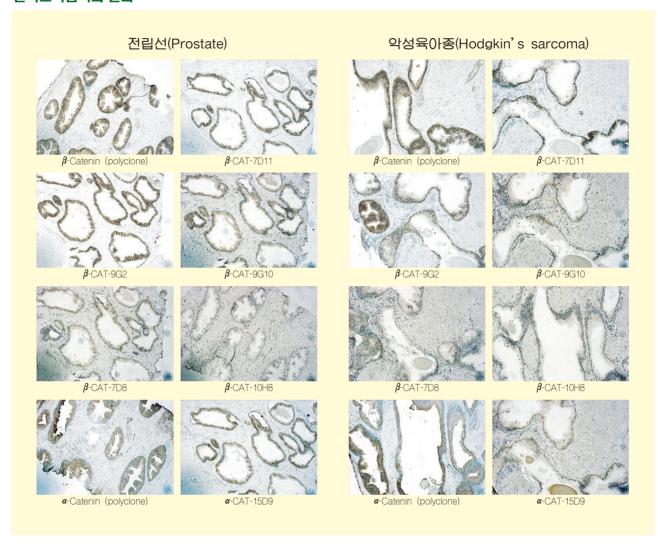


표 2 각종 β -catenin monoclonal 항체의 epitope 특이성

Clon	특 이 성	1-781 a.a. 전체	120-781 a.a. N 말단 영역 결실	1-683 a.a. C 말단 영역 결실	120-683 a.a. 중앙부(Core)	70-156 a.a. Exon 3	769-781 a.a. C말단 영역
β-CAT-7D11	N 말단 영역/Exon 2를 인식한다.	+	_	+	_	_	_
β -CAT-9G2	Exon 3(70-156 a.a.)/α-catenin 결합부위를 인식한다.	+	_	+	_	+	_
β -CAT-9G10	Core 영역을 인식한다.	+	+	+	+	_	_
β -CAT-7D8	C 말단 영역/Exon 14를 인식한다.	+	+	_	_	_	_
eta-CAT-10H8	C 말단 영역(769-781)을 인식한다.	+	+	_	_	_	+

[제품리스트]

제품명	Clon번호	특이성	TaKaRa Code	Subclass	포장량
Anti α-Catenin	α-CAT-15D9	사람, 쥐, 토끼항원에 반응한다.	M150	IgG₁ κ 쇄	0.1 mg
Anti β -Catenin	β -CAT-7D11	사람, 쥐, 토끼, 개 항원에 반응한다.	M151	IgG2a κ 쇄	0.1 mg
	β -CAT-9G2	사람, 쥐, 토끼, 개 항원에 반응한다.	M152	IgG₁ <i>κ</i> 쇄	0.1 mg
	β -CAT-9G10	사람, 쥐, 토끼, 개 항원에 반응한다.	M153	IgG₂₀ κ 쇄	0.1 mg
	$oldsymbol{eta}$ -cat-7d8	사람, 쥐, 토끼, 개 항원에 반응한다.	M154	IgG₁ κ 쇄	0.1 mg
	β -CAT-10H8	사람, 쥐, 토끼, 개 항원에 반응한다.	M155	IgG2a K 소내	0.1 mg
Polyclonal Anti-l	Human α-catenin	사람, 쥐, 돼지 항원에 반응한다.	M133		0.4 mg
Polyclonal Anti-l	Human β-catenin	사람 항원에 반응한다.	M136		0.4 mg